
Sequential DE Enhanced by Neighborhood Search
for Large Scale Global Optimization

Hui Wang, Zhijian Wu, Shahryar Rahnamayan and Dazhi Jiang

Abstract— In this paper, the performance of a sequential
Differential Evolution (DE) enhanced by neighborhood search
(SDENS) is reported on the set of benchmark functions pro-
vided for the CEC2010 Special Session on Large Scale Global
Optimization. The original DENS was proposed in our previous
work, which differs from existing works which are utilizing the
neighborhood search in DE, such as DE with neighborhood
search (NSDE) and self-adaptive DE with neighborhood search
(SaNSDE). In SDENS, we focus on searching the neighbors
of individuals, while the latter two algorithms (NSDE and
SaNSDE) work on the adaption of the control parameters F
and CR. The proposed algorithm consists of two following main
steps. First, for each individual, we create two trial individuals
by local and global neighborhood search strategies. Second,
we select the fittest one among the current individual and
the two created trial individuals as a new current individual.
Additionally, sequential DE (DE with one-array) is used as
a parent algorithm to accelerate the convergence speed in
large scale search spaces. The simulation results for twenty
benchmark functions with dimensionality of one thousand are
reported.

Index Terms— Differential evolution, neighborhood search,
local search, large scale global optimization, high dimensional.

I. INTRODUCTION

Differential Evolution (DE), proposed by Price and Storn
[1], is an effective, robust, and simple global optimization
algorithm. According to frequently reported experimental
studies, DE has shown better performance than many other
evolutionary algorithm (EAs) in terms of convergence speed
and robustness over several benchmark functions and real-
world problems [2].

In this paper, a novel sequential DE algorithm enhanced
by neighborhood search (SDENS) is proposed to improve
the performance of DE. The DENS was introduced in our
previous work [3] which presented two neighborhood search
strategies to improve the quality of candidate solutions.
In order to deal with large scale optimization problems,
we employ a sequential DE (one-array DE) to accelerate
the convergence speed. The performance of the algorithm
is evaluated on the set of benchmark functions provided
for the CEC2010 Special Session on Large Scale Global
Optimization [4].

Hui Wang and Zhijian Wu are with the State Key Laboratory of
Software Engineering, Wuhan University, Wuhan, 430072 China (e-mail:
wanghui cug@yahoo.com.cn; zjwu9551@sina.com).

Shahryar Rahnamayan is with Faculty of Engineering and Ap-
plied Science, University of Ontario Institute of Technology (UOIT),
2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada (e-mail:
shahryar.rahnamayan@uoit.ca).

Dazhi Jiang is with the Department of Computer Science, Shantou
University, Shantou 515063 China (e-mail: jiangdazhi111007@tom.com).

The rest of the paper is organized as follows. In Section
II, the classical DE algorithm is briefly reviewed. A short
review of related works on large scale global optimization
is presented in Section III. Section IV describes the pro-
posed approach, SDENS. In Section V, the test benchmark
functions, parameter settings besides a comprehensive set of
scalability benchmarking are provided. Finally, the work is
summarized and concluded in Section VI.

II. DIFFERENTIAL EVOLUTION

There are several variants of DE [1], where the most
popular variant is indicated by DE/rand/1/bin which is called
classical version. Let us assume that Xi,G(i = 1, 2, . . . , Np)
is the ith individual in population P (G), where Np is the
population size, G is the generation index, and P (G) is the
population in the Gth generation. The main idea behind the
DE is to generate trial vectors. Mutation and crossover are
used to produce new trial vectors, and selection determines
which of the vectors will be successfully selected into the
next generation, for the two-array DE. For one-array DE
(sequential DE), the selected vector is replaced in the same
array. Fig. 1 and 2 present the schemes of two-array DE and
one-array DE, respectively.

Mutation–For each vector Xi,G in generation G, a mutant
vector V is generated by

Vi,G = Xi1,G + F (Xi2,G − Xi3,G) , (1)

i �= i1 �= i2 �= i3,

Fig. 1. The scheme of two-array DE.

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

Fig. 2. The scheme of one-array DE (sequential DE).

where i = 1, 2, . . . , Np and i1, i2, and i3 are mutually
different random integer indices within {1, 2, · · · , Np}. The
population size Np should be satisfied by Np ≥ 4 because
i, i1, i2, and i3 are different. F ∈ [0, 2] is a real number
that controls the amplification of the difference vector
(Xi2,G − Xi3,G).

Crossover–Similar to genetic algorithms, DE also em-
ploys a crossover operator to build trial vectors by recom-
bining two different vectors. The trial vector is defined as
follows:

Ui,G = (Ui,1,G, Ui,2,G, . . . , Ui,D,G) , (2)

where j = 1, 2, . . . ,D and

Ui,j,G =
{

Vi,j,G, if randj(0, 1) ≤ CR ∨ j = l
Xi,j,G, otherwise

. (3)

CR ∈ (0, 1) is the predefined crossover probability, and
randj(0, 1) is a random number within [0, 1] for the jth
dimension, and l ∈ {1, 2, . . . ,D} is a random parameter
index.

Selection–A greedy selection mechanism is used as fol-
lows:

Xi,G =
{

Ui,G, if f(Ui,G) ≤ f(Xi,G)
Xi,G, otherwise

. (4)

Without loss of generality, this paper only considers min-
imization problem. If, and only if, the trial vector Ui,G is
better than Xi,G, then Xi,G is set to Ui,G; otherwise, the
Xi,G is unchanged.

III. RELATED WORKS

Although classical evolutionary algorithms (EAs) have
shown good optimization performance in solving some lower
dimensional problems (D < 100), many of them suffers
from the curse of dimensionality, which implies that their

performance deteriorates quickly as the the dimensional size
increases. The main reason is that in general the complexity
of the problem increases with the size of its dimension.
The majority of evolutionary algorithms lack the power of
searching the optima solution when dimensionally increases.
So more efficient search strategies are required to explore all
the promising regions in a given time budget [5].

To improve the performance of population-based algo-
rithms on large scale optimization problems, some interesting
works have been proposed in the past two years. Yang
et al. [6] proposed a multilevel cooperative co-evolution
algorithm based on self-adaptive neighborhood search DE
(SaNSDE) to solve large scale problems. Hsieh et al. [7]
presented an efficient population utilization strategy for PSO
(EPUS-PSO) to manage the population size. Brest et al. [8]
introduced a population size reduction mechanism into self-
adaptive DE, where the population size decreases during
the evolutionary process. Tseng and Chen [9] presented
multiple trajectory search (MTS) by using multiple agents to
search the solution space concurrently. Zhao et al. [10] used
dynamic multi-swarm PSO with local search (DMS-PSO) for
large scale problems. Rahnamayan and Wang [11] presented
a experimental study of opposition-based DE (ODE) [12]
on large scale problems. The reported results show that
ODE significantly improves the performance of standard DE.
Wang and Li [13] proposed a univariate EDA (LSEDA-
gl) by sampling under mixed Gaussian and lévy probabil-
ity distribution. Rahnamayan and Wang [14] introduced an
effective population initialization mechanism when dealing
with large scale search spaces. Wang et al. [15] proposed
an enhanced ODE based on generalized opposition-based
learning (GODE) to solve scalable benchmark functions.
Molina et al. [16] presented a memetic algorithm by em-
ploying MTS and local search chains to deal with large scale
problems.

IV. SEQUENTIAL DE ENHANCED BY NEIGHBORHOOD

SEARCH MECHANISM

A. Literature Review

Like other stochastic algorithms, DE also suffers from the
problem of premature convergence when solving complex
multimodal problems. Sometimes, the suboptimum is near
to the global optimum and the neighborhoods of trapped
individuals may cover the global optimum. At such situation,
searching the neighborhood of an individual is helpful to find
better solutions. In this paper, we propose a hybrid sequential
DE algorithm, called SDENS, to search the neighborhoods
of individuals. The proposed approach differs from previous
neighborhood search strategies in DE [17] or PSO [18].
Moreover, all other versions used two-array DE but SDENS
uses one-array DE. Before introducing the SDENS, we need
to give a brief review of other DE variants equipped by
neighborhood search.

Yang et al. [19] introduced a neighborhood search strategy
for DE (NSDE), which generates F using Gaussian and
Cauchy distributed random numbers instead of predefining

a constant F . In NSDE, different values of F indicate
the different mutant vectors in the neighborhood of current
vector. Based on SaDE [20], [21] and NSDE, Yang et al. [22]
proposed another version of DE, called self-adaptive DE with
neighborhood search (SaNSDE), which inherits from NSDE
to generate self-adaptive F , and uses a weighted adaptation
scheme to calculate a better crossover rate CR. The pre-
sented experimental results show that SaNSDE outperforms
SaDE and NSDE. As seen, these two DE variants with
neighborhood search focus on the adaption of the control
parameters.

We need to support a tradeoff between exploration and
exploitation in most of EAs. The former indicates the global
search ability and makes the algorithm explore every region
of the feasible search space, while the latter means the local
search ability and accelerates the algorithm converging to
the near-optimal solutions. Most improvements on EAs try
to seek a balance between these two factors which is suitable
for different kinds of problems. The DE/target-to-best/1
mutation strategy (described in Eq.5) promotes exploitation
since all the individuals move to the same best position by the
attraction of Xbest, thereby results converging faster to that
point [23]. But in many cases, the population may lose its
global exploration abilities within a relatively small number
of generations, thereafter getting trapped to some locally
optimal point in the search space (premature convergence).
To tackle this problem, Das et al. [23] proposed an enhanced
DE algorithm (DEGL) by using an improved DE/target-to-
best/1 strategy which employs two mutation strategies: local
neighborhood and global neighborhood.

Vi,G =Xi,G + F · (Xbest,G − Xi,G)
+ F · (Xr1,G − Xr2,G), (5)

where Xbest,G indicates the best vector in the population at
generation G, r1, r2 ∈ {1, 2, · · · , Np}, and i �= r1 �= r2.

Local Neighborhood Mutation–In the local model, each
individual is mutated using the best position found so far in
a small neighborhood of it and not the whole population.
Thereby, the vectors are no longer attracted by the same
global best point. The modified model is defined by

Li,G =Xi,G + α · (Xn besti,G − Xi,G)
+ β · (Xp,G − Xq,G), (6)

where the subscript n besti indicates the best individual in
the neighborhood of Xi,G, p, q ∈ [i−k, i+k] with p �= q �= i,
and k is the neighborhood size. The individuals Xn besti,G,
Xp,G and Xq,G are defined on a small neighborhood of
Xi,G, and the searching behavior of each individual is
almost independent. The information of individuals spread
through the population regarding the best position of each
neighborhood. Therefore, the attraction toward a specific
points is weaker, which prevents the population from getting
trapped into local minima [23].

Global Neighborhood Mutation–Besides the local neigh-
borhood mutation, the DEGL also employs a global neigh-

Fig. 3. The k-neighborhood in a ring topology, where k = 2.

borhood model by adding two scaling factors α and β in the
original DE/target-to-best/1 strategy as follows.

Gi,G =Xi,G + α · (Xbest,G − Xi,G)
+ β · (Xr1,G − Xr2,G), (7)

where the subscript Xbest indicates the best individual in the
entire population at generation G, r1, r2 ∈ {1, 2, · · · , Np}
with r1 �= r2 �= i, and Np is the population size. The
parameters α and β are the scaling factors.

Based on the two neighborhood mutations, DEGL com-
bines them using a scalar weight w ∈ (0, 1) to form a new
mutation strategy instead of the original DE/rand/1/bin or
DE/target-to-best/1 strategy.

Vi,G = w · Gi,G + (1 − w) · Li,G. (8)

B. The Proposed Approach

In the DEGL, a static ring topology of neighborhood is
defined on the set of indices of the vectors. The vector
Xi,G is connected by Xi+1,G and Xi−1,G. For instance,
X2,G and XNp,G are two immediate neighbors of X1,G.
On the basis of the ring topology, DEGL defines a k-
neighborhood radius in the ring topology, consisting of
vectors Xi−k,G, . . . , Xi,G, . . . , Xi+k,G, for each Xi, where
k is an integer within {0, 1, · · · ,

Np−1
2 }, as the neighborhood

size must be smaller than the population size 2k + 1 ≤ Np.
Fig. 3 presents the k-neighborhood radius, where k = 2.
In the local neighborhood mutation, DEGL selects the best
vectors and two random vectors in the k-neighborhood radius
of Xi,G.

However, the above selection range is not the real neigh-
borhood of the current vector Xi,G, but the entire population.
Because the ring topology is defined on the indices of the
vectors, but not based on the Euclidean distances among the
vectors. The immediate neighbors Xi+1,G and Xi−1,G of
Xi,G may not the nearest neighbor to Xi,G. In Eq.6, the

Administrator
Highlight

Algorithm 1: Sequential DE Enhanced by Neighborhood
Search (SDENS).

Randomly initialize each individual in the population P (G);1
Calculate the fitness value of each Xi,G;2
FEs = Np;3
Initialize Xpbesti,G and Xbest,G;4
while FEs ≤ MAX FEs do5

for i = 1 to Np do6
/* Execute DE with hybrid crossover

strategy */
Randomly select 3 vectors Xi1,G, Xi2,G and Xi3,G7
from P (G), where i �= i1 �= i2 �= i3 ;
if rand(0, 1) ≤ 0.5 then8

Generate the trail vector Ui,G using rand/1/bin;9
end10
else11

Generate the trail vector Ui,G using rand/1/exp;12
end13
Calculate the fitness value of Ui,G;14
FEs = FEs + 1;15
if f(Ui,G) < f(Xi,G) then16

Xi,G = Ui,G17
end18
Update Xpbesti,G and Xbest,G, if needed;19
/* Conduct the neighborhood search */
if rand(0, 1) ≤ pns then20

Create two trial vectors Li,G and Gi,G according21
to Eq.11 and Eq.12, respectively;
Calculate the fitness values of Li,G and Gi,G;22
FEs = FEs + 2;23
Select the fittest vectors from {Xi,G, Li,G and24
Gi,G} as new Xi,G;

end25
Xi,G+1 = Xi,G;26

end27
G = G + 1;28

end29

Xn besti,G, Xp,G and Xq,G are not the nearest neighbors to
Xi,G in the entire population.

In this paper, we propose another neighborhood search
scheme which is inspired from the basic idea behind of
DEGL [23] and also particle swarm optimization (PSO) [24].
In PSO, particles are attracted by their previous best particles
and the global best particle. Whenever a particle flies towards
good points in the search space, it continuously modifies
its trajectory by learning from its previous best particle and
the global best particle. Both DE/target-to-best/1 and DEGL
only inherit from the experiences of the global best vector.
In our approach, a vector not only learns from the exemplar
of its previous best vector Xpbest i, but also learns from the
experience of the global best vector Xbest. As mentioned
before, the defined k-neighborhood radius does not really
indicate the nearest neighbors to the current vector. So we
select the Xp,g and Xq,g in the whole population to simplify
the operation. The modified local neighborhood strategy is
defined by

Li,G =Xi,G + α · (Xpbesti,G − Xi,G)
+ β · (Xp,G − Xq,G), (9)

where Xpbesti,G is the previous best vector of Xi,G at
generation G, p and q are two random integers within
{1, 2, · · · , Np}.

The Eq.9 can be rewritten by

Li,G =(1 − α) · Xi,G + α · Xpbesti,G

+ β · (Xp,G − Xq,G). (10)

To simply the scaling factors (1−α), α and β in Eq.10, we
use three correlated random numbers a1, a2 and a3 instead
of them, where a1, a2, a3 ∈ [0, 1] and a1 + a2 + a3 = 1.
Then, we get a new local neighborhood model as follows.

Li,G =a1 · Xi,G + a2 · Xpbesti,G

+ a3 · (Xp,G − Xq,G). (11)

Similar to the local model, we define the global neighbor-
hood model as follows.

Gi,G =a1 · Xi,G + a2 · Xbest,G

+ a3 · (Xr1,G − Xr2,G), (12)

where Xbest,G indicates the global best vector in the entire
population at generation G, r1, r2 ∈ {1, 2, · · · , Np} with
r1 �= r2 �= i. The correlated random numbers a1, a2 and a3

are the same for each Xi,G, and they are generated anew in
each generation.

In the proposed approach, SDENS, we use two modified
neighborhood search strategies (Eq.11 and Eq.12) to create
two trial vectors Li,G and Gi,G around the current vector
Xi,G. And then, the fittest one among Xi,G, Li,G and Gi,G

is selected as the new Xi,G.
Hybrid Crossover Strategy–According to suggestions

of [25], DE with exponential crossover (rand/1/exp) shows
better performance than binomial crossover (rand/1/bin) to
solve high-dimensional problems. However, our empirical
studies demonstrate that the exponential crossover is not
suitable for all kinds of test functions. For some functions,
the binomial crossover is more beneficial. To make a balance
between these two crossover schemes, we use a hybrid
crossover strategy as follows.{

rand/1/bin, if rand(0, 1) ≤ 0.5
rand/1/exp, otherwise , (13)

where rand(0, 1) is a random number within [0, 1].
The DENS has been proposed in our previous work [3]

includes two operations, classical DE and neighborhood
search, which are conducted in two different populations.
In order to accelerate the convergence speed on large scale
optimization, in this paper, we have utilized a sequential
DENS, which executes classical DE and the neighborhood
search in the same one population. The main steps of the
SDENS are described in Algorithm 1, where Xpbesti,G is the
previous best vector of Xi,G, Xbest,G is the global best vector
found so far in the population, G indicates the generation
index, pns is the probability of the neighborhood search, FEs
is the number of function evaluations, and MAX FEs is the
maximum number of function evaluations.

TABLE I

RUNTIME ON THE TEST SUITE

System Windows XP (SP3)
CPU Intel (R) Core (TM)2 Duo CPU T6400 (2.00GHz)
RAM 2 G

Language Java
Algorithm SDENS

Runs/problem 25
MAX FEs 3e+6
Dimension 1000
Runtime 78.6 hours

V. SIMULATION RESULTS

The proposed SDENS algorithm was tested on 20 bench-
mark functions provided by CEC2010 Special Session on
Large Scale Global Optimization [4]. The parameter settings
of SDENS are described as follows. The population size, Np,
is set to 50 based on empirical studies. The control parame-
ters F and CR are set to 0.5 and 0.9, respectively [12]. The
pns is set to 0.05 by the suggestions of our previous work [3].
The maximum number of functions evaluations MAX FEs is
set to 3e+6 for all test functions. The algorithm is conducted
25 runs for each test function, and the best, median, worst,
mean and standard deviation of the error values are recorded.

The runtime of SDENS for the test suite are listed in
Table I. For each test function, SDENS conducts 25 runs and
the whole experiment on the 20 test functions cost about 97
hours.

Table II presents the results of SDENS on given 20 test
functions. From the results, it can be seen that SDENS
achieves good results only on four functions F1, F3 and F6.
For the rest of functions, especially for functions F4, F5,
F7 − F9, F12, F14, F17 and F19, it could hardly find better
solutions. The average converge curves on F2, F5, F8, F10,
F13, F15, F18 and F20 are illustrated in Fig. 4.

VI. CONCLUSION REMARKS

In this paper, sequential DE enhanced by neighborhood
search (SDENS) is proposed. The main idea of SDENS is
to create two neighbors around the current individual by one
local and one global neighborhood mutation operators. By
simultaneously concerning the current individual and its two
newly generated neighbors, we have more chance to find
better solutions. Moreover, a one-array mechanism is used
to accelerate the convergence speed. The performance of
SDENS algorithm was evaluated on the set of benchmark
functions provided by CEC2010 Special Session on Large
Scale Global Optimization.

Compared with other DE variants with neighborhood
search, the concept behind of SDENS is very simple and
easy to implement, while SaNSDE is difficult to implement
because of its complex steps in calculating the self-adaptive
control parameters. Moreover, the modified neighborhood
search strategies in SDENS can be easily applied to other
population-based algorithms.

In the experiments, the parameter settings of Np and pns

highly determine the performance of SDENS, and this paper

only presents an empirical study. More investigations will be
conducted to adjust these factors in the future work.

ACKNOWLEDGMENT

This work was supported by the Jiangxi Province Science
& Technology Pillar Program (No.: 2009BHB16400), and
the National Natural Science Foundation of China (No.s:
60871021, 60473037).

REFERENCES

[1] R. Storn and K. Price, “Differential evolution–A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimiz., vol. 11, pp. 341–359, 1997.

[2] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proc. Congr. Evol. Comput., 2004,
vol. 2, pp. 1980–1987.

[3] H. Wang, Z. Wu and S. Rahnamayan, “Differential evolution enhanced
by neighborhood search,” submitted to Proc. Congr. Evol. Comput.,
2010.

[4] K. Tang, X. Li, P. N. Suganthan, Z. Yang and T. Weise, “Bench-
mark functions for the CEC’2010 special session and competition
on large-scale global optimization,” Technical report, Nature In-
spired Computation and Applications Laboratory, USTC, China, 2010.
http://nical.ustc.edu.cn/cec10ss.php.

[5] K. Tang, X. Yao, P. N. Suganthan C. Macnish, Y. Chen, C. Chen,
Z. Yang, “Benchmark functions for the CEC’2008 special session and
competition on high-dimensional real-parameter optimization,” Techni-
cal report, Nature Inspired Computation and Applications Laboratory,
USTC, China, 2007. http://nical.ustc.edu.cn/cec08ss.php.

[6] Z. Yang, K. Tang, X. Yao, “Multilevel cooperative coevolution for large
scale optimization, in Proc. Congr. Evol. Comput., 2008, pp. 1663–
1670.

[7] S. Hsieh, T. Sun, C. Liu, S. Tsai, “Solving large scale global optimiza-
tion using improved particle swarm optimizer, in Proc. Congr. Evol.
Comput., 2008, pp. 1777–1784.

[8] J. Brest, A. Zamuda, B. Bošković, M. S. Maučec, V. Žumer, “High-
dimensional real-parameter optimization using self-adaptive differential
evolution algorithm with population size reduction, in Proc. Congr.
Evol. Comput., 2008, pp. 2032–2039.

[9] L. Tseng, C. Chen, “Multiple trajectory search for large scale global
optimization, in Proc. Congr. Evol. Comput., 2008, pp. 3057–3064.

[10] S. Zhao, J. Liang, P. N. Suganthan, M. F. Tasgetiren, “Dynamic multi-
swarm particle swarm optimizer with local search for large scale global
optimization, in Proc. Congr. Evol. Comput., 2008, pp. 3846–3853.

[11] S. Rahnamayan, G. Gary Wang, Solving large scale optimization prob-
lems by opposition-based differential evolution (ODE), World Scientific
and Engineering Academy and Society, in Transactions on Computers,
Volume 7, Issue 10, pp. 1792–1804, 2008.

[12] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no.
1 pp. 64–79, 2008.

[13] Y. Wang, B. Li, A restart univariate estimation of distribution algorithm
sampling under mixed Gaussian and Lévy probability distribution, in
Proc. Congr. Evol. Comput., 2008, pp. 3918–3925.

[14] S. Rahnamayan, G.G. Wang, Toward effective initialization for large-
scale search spaces, World Scientific and Engineering Academy and
Society, in Transactions on Systems, Volume 8, Issue 3, pp. 355-367,
2009.

[15] H. Wang, Z. Wu, S. Rahnamayan, and L. Kang, “A scalability test for
accelerated DE using generalized opposition-based learning,” in Proc.
Intelligent System Design and Applications, 2009, pp. 1090–1095.

[16] D. Molina, M. Lozano and F. Herrera, “Memetic algorithm with local
search chaining for continuous optimization problems: A scalability
test,” in Proc. Intelligent System Design and Applications, 2009, pp.
1068–1073.

[17] U. K. Chakraborty, S. Das and A. Konar, “Differential Evolution with
Local Neighborhood,” in Proc. Congr. Evol. Comput., 2006, pp. 7395–
7402.

[18] P. N. Suganthan, “Particle swarm optimiser with neighbourhood oper-
ator,” in Proc. Congr. Evol. Comput., 1999, pp. 1958–1962.

TABLE II

THE RESULTS ACHIEVED BY SDENS ON THE TEST SUITE

FEs F1 F2 F3 F4 F5 F6 F7

Best 3.93e+09 1.16e+04 1.99e+01 3.90e+13 3.14e+08 9.88e+05 3.07e+10
Median 4.74e+09 1.19e+04 2.01e+01 4.60e+13 3.32e+08 2.03e+06 3.57e+10

FEs = 1.2e5 Worst 6.19e+09 1.20e+04 2.02e+01 7.90e+13 3.41e+08 2.39e+06 4.70e+10
Mean 5.01e+09 1.19e+04 2.01e+01 5.10e+13 3.29e+08 1.84e+06 3.75e+10
Std 9.18e+08 9.89e+01 1.17e–01 1.46e+13 1.04e+07 4.77e+05 5.46e+09
Best 3.82e+06 7.00e+03 5.13e+00 8.47e+12 1.51e+08 1.38e+01 5.73e+09

Median 4.59e+06 7.12e+03 6.27e+00 1.53e+13 1.83e+08 1.53e+01 7.73e+09
FEs = 6e5 Worst 1.95e+07 7.17e+03 6.76e+00 2.85e+13 2.12e+08 1.74e+01 1.36e+10

Mean 7.87e+06 7.09e+03 6.12e+00 1.72e+13 1.81e+08 1.53e+01 9.28e+09
Std 5.94e+06 6.76e+01 6.30e–01 6.68e+12 2.29e+07 1.18e+00 3.44e+09
Best 1.75e–06 2.14e+03 1.23e–05 3.26e+12 7.66e+07 1.53e–04 6.36e+07

Median 2.54e–06 2.17e+03 2.35e–05 3.72e+12 1.17e+08 1.76e–04 8.57e+07
FEs = 3e6 Worst 1.16e–05 2.39e+03 5.50e–05 8.99e+12 1.52e+08 2.57e–04 2.39e+08

Mean 5.73e–06 2.21e+03 2.70e–05 5.11e+12 1.18e+08 2.02e–04 1.20e+08
Std 4.46e–06 8.95e+01 1.54e–05 2.16e+12 2.88e+07 4.29e–05 6.56e+07

F8 F9 F10 F11 F12 F13 F14

Best 6.05e+08 1.13e+10 1.37e+04 2.27e+02 2.71e+06 1.70e+10 1.42e+10
Median 6.23e+08 1.52e+10 1.38e+04 2.27e+02 2.83e+06 1.91e+10 1.73e+10

FEs = 1.2e5 Worst 1.20e+09 1.89e+10 1.42e+04 2.28e+02 3.29e+06 2.01e+10 2.31e+10
Mean 7.71e+08 1.56e+10 1.39e+04 2.27e+02 2.95e+06 1.88e+10 1.84e+10
Std 2.27e+08 2.77e+09 2.51e+02 3.49e–01 2.37e+05 1.07e+09 3.56e+09
Best 4.64e+07 1.78e+09 1.02e+04 2.25e+02 1.25e+06 4.37e+05 3.91e+09

Median 6.40e+07 2.13e+09 1.09e+04 2.26e+02 1.30e+06 6.67e+05 5.02e+09
FEs = 6e5 Worst 1.09e+08 2.88e+09 1.15e+04 2.26e+02 1.42e+06 7.64e+05 6.93e+09

Mean 7.41e+07 2.23e+09 1.10e+04 2.26e+02 1.32e+06 6.43e+05 5.14e+09
Std 2.73e+07 3.70e+08 4.59e+02 3.83e–01 5.98e+04 1.10e+05 9.89e+08
Best 3.96e+07 4.77e+08 5.78e+03 2.20e+02 3.80e+05 1.16e+03 1.61e+09

Median 4.09e+07 5.75e+08 7.03e+03 2.21e+02 3.95e+05 1.80e+03 1.86e+09
FEs = 3e6 Worst 9.35e+07 6.38e+08 7.37e+03 2.22e+02 4.97e+05 4.13e+03 2.30e+09

Mean 5.12e+07 5.63e+08 6.87e+03 2.21e+02 4.13e+05 2.19e+03 1.88e+09
Std 2.12e+07 5.78e+07 5.60e+02 5.09e–01 4.28e+04 1.03e+03 2.33e+08

F15 F16 F17 F18 F19 F20

Best 1.36e+04 4.15e+02 3.84e+06 2.00e+11 1.19e+07 2.39e+11
Median 1.45e+04 4.15e+02 4.25e+06 2.09e+11 1.57e+07 2.62e+11

FEs = 1.2e5 Worst 1.45e+04 4.15e+02 4.98e+06 2.35e+11 2.31e+07 2.82e+11
Mean 1.43e+04 4.15e+02 4.31e+06 2.11e+11 1.67e+07 2.61e+11
Std 3.72e+02 1.08e–01 4.04e+05 1.27e+10 3.71e+06 1.49e+10
Best 7.32e+03 4.13e+02 1.96e+06 1.65e+08 4.92e+06 1.36e+08

Median 1.18e+04 4.13e+02 2.02e+06 1.86e+08 5.39e+06 2.78e+08
FEs = 6e5 Worst 1.26e+04 4.14e+02 2.29e+06 3.00e+08 6.18e+06 3.52e+08

Mean 1.03e+04 4.13e+02 2.07e+06 2.02e+08 5.41e+06 2.69e+08
Std 2.29e+03 3.49e–01 1.17e+05 5.02e+07 4.31e+05 7.57e+07
Best 7.14e+03 4.03e+02 8.78e+05 1.16e+04 7.57e+05 9.81e+02

Median 7.32e+03 4.09e+02 1.14e+06 3.32e+04 8.02e+05 9.83e+02
FEs = 3e6 Worst 7.44e+03 4.10e+02 1.18e+06 4.51e+04 1.19e+06 1.02e+03

Mean 7.32e+03 4.08e+02 1.08e+06 3.08e+04 8.80e+05 9.90e+02
Std 9.63e+01 2.53e+00 1.11e+05 1.22e+04 1.59e+05 1.62e+01

[19] Z. Yang, J. He, and X. Yao, “Making a difference to differential
evolution,” in Advance in Metaheuristics for Hard Optimization, 2008,
pp. 397–414.

[20] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Proc. Congr. Evol. Comput.,
2005, vol.2, pp. 1785–1791.

[21] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion,” IEEE Trans. Evol. Comput., pp. 398-417, 2009.

[22] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Proc. Congr. Evol. Comput., 2008, pp.
1110–1116.

[23] S. Das, A. Abraham, U. Chakraborty and A. Konar, “Differential
evolution using a neighborhood-based mutation operator,” IEEE Trans.

Evol. Comput., vol. 13(3), pp. 526–553, 2009.
[24] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,’ in Proc.

IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.
[25] F. Herrera, M. Lozano, D. Molina, “Components and Parameters of

DE, Real-coded CHC, and G-CMAES,” Technical Report, University
of Granada, Spain, 2010.

(a) F2 (b) F5

(c) F8 (d) F10

(e) F13 (f) F15

(g) F18 (h) F20

Fig. 4. The average convergence curves of SDENS on F2, F5, F8, F10, F13, F15, F18 and F20.

